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The dynamic behavior of the multi-span continuous beam traversed by a moving
mass at a constant velocity is investigated, in which it is assumed that each span of
the continuous beam obeys uniform Euler}Bernoulli beam theory. The solution to
this system is simply obtained by using both eigenfunction expansion or the modal
analysis method and the direct integration method in combination. The e!ects of
the inertia and the moving velocity of the load on the dynamic response of the
continuous beam are evaluated for three kinds of continuous beams having
uniform span length.
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1. INTRODUCTION

The dynamic behavior of beam structures, such as bridges on railways, subjected to
moving loads or masses has been investigated for over a century. There are
numerous reports available in the excellent monographs of Fryba [1, 2], and most
of them treat a uniform simply supported beam of single span.

When the e!ect of the inertia of the load is accounted for, the problem is
associated with serious di$culties even for the case of a single-span beam. Cai et al.
[3] investigated the dynamic interactions between the vehicle and guideway of
a maglev system by modelling the vehicle as a concentrated moving force and as
a two-degree-of-freedom model. Michaltsos et al. [4] derived a closed-form
solution for the single-span beam to a moving mass by approximating the total
time derivative of the mass displacement with the partial derivative and by using as
a "rst approximation the solution of the corresponding problem without the e!ect
of the mass. Recently, Foda and Abduljabbar [5] studied the in#uence of the
parameters of the system on the dynamic response of the single-span beam
subjected to a moving mass using the method of dynamic Green function. Lee [6, 7]
investigated the possibility of mass separation from the beam during the mass
motion using the Lagrangian approach and the assumed mode method for the
Euler and the Timoshenko beams of single span.

There are not so many reports on the dynamic problem of a multi-span
continuous beam subjected to the moving load. Yang et al. [8] presented the useful
impact formulas for vehicles moving over the simple and continuous beams. Lee
22-460X/00/080493#14 $35.00/0 ( 2000 Academic Press



Figure 1. Illustration of an N-span continuous beam subjected to a moving mass.
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[9] investigated the Euler beam on multiple supports with a moving mass using the
assumed mode method. Chatterjee et al. [10] investigated the dynamic response of
the multi-span continuous bridge under a moving vehicle modelled as a single
unsprung or sprung mass, using the eigensti!ness method developed by
Hayashikawa and Watanabe [11]. Henchi et al. [12] also presented the dynamic
sti!ness element method, followed by the modal fast Fourier transform approach,
for the moving load problem of the multi-span continuous beam. Yang and Yau
[13] developed the vehicle}bridge interaction element with both accuracy and
e$ciency in the analysis of railway bridges carrying high-speed trains.

Ichikawa et al. [14] investigated the dynamic response of a multi-span
Euler}Bernoulli beam subjected to a moving load at time-dependent velocity using
the method of the eigenfunction expansion or the modal analysis, and estimated the
e!ects of acceleration or deceleration of a moving load on the dynamic
ampli"cation factor for a symmetric three-span continuous beam. Its solution
method is simple and can be widely applied.

The present paper investigates the response of the multi-span Euler}Bernoulli
beam subjected to a moving mass by using the method just described. The equation
of transverse motion of each span is non-dimensionalized in a reasonable manner,
and is transformed into the coupled ordinary di!erential equation of second order
for the generalized co-ordinate whose solution is found through the direct
integration method in the present paper. The e!ects of the inertia and the velocity
of the moving load are evaluated numerically for three kinds of continuous beams
of uniform span length.

2. FORMULATION

In the present paper, the following assumptions are made for the formulation of
the vibration problem of a continuous beam subjected to moving mass as in Figure
1: (1) each span of the continuous beam obeys a Euler}Bernoulli beam theory and
has linear elastic behavior; (2) the moving mass keeps contact with the continuous
beam at all times; and (3) for the initial conditions, the moving mass is located at the
left-hand end of the continuous beam.
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The equation of the trnsverse vibration for each span is given by
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in which the su$x r denotes the rth span, EI, o and A denote, respectively, the
#exural rigidity, mass density and the cross-sectional area. Furthermore, w is the
transverse de#ection of each span, f is the time-varying external load distribution
due to moving loads, x

r
is the local co-ordinate along the axis of the rth span, and

t is the time. The continuity and equilibrium conditions at the intermediate support
points of the continuous beam require the following relations:
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and the symbol ( @ ) denotes di!erentiation with respect to the dimensionless spatial
variable.
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respectively. Then, the following results are easily obtained for the simply
supported continuous beam:
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The coe$cients B
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and D
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may be expressed in the matrix form of
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The frequency equation for the simply supported continuous beam, from which the
values of j are found, is as follows:
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The solutions of equation (3) can be expressed as the series
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This relation is indeed suitable for the computer implementation of the present
analysis because of its clear and simple expression, so that the present method can
be applied to the continuous beams with other combinations of boundary
conditions with only minor changes. Thus, substitution of equation (15) into
equation (3), and use of equation (16) lead to
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When considering the e!ect of the inertia of the moving mass m, the external
forces fM

r
on the right-hand side of equation (18) should be regarded as the
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time-varying reaction forces acting at the point of contact. From the equation of
vertical motion of the moving mass, the functions fM

r
can be expressed by
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where g is the gravitational acceleration, y the vertical displacement of the moving
mass, sN is de"ned to represent s/ l

1
which indicates the dimensionless distance

between the instantaneous position of the moving mass and the left-hand end of the
continuous beam, d is the Dirac delta function and H is the Heaviside step function.
Since both y and sN are functions of only time, substitution of equation (19) into
equation (18) yields
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It should be noticed that the dimensionless parameter e denotes the mass ratio of
the moving mass to the total mass of the "rst span, and that the quantity
mgl3

1
/(EI)

1
means the scaling factor for the transverse displacement of the system

under investigation.
From the second assumption that the moving mass keeps contact with the

continuous beam at all times, the non-dimensional displacement yL is the right-hand
side of equation (20) can be written by
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Figure 2. Illustration of the continuous beam of N equal spans subjected to a mass moving at
constant velocity.

TABLE 1

¹he ,rst six eigenvalues of continuous beams in Figure 2

Number Roots j
j
of equation (14)

of
spans j

1
j
2

j
3

j
4

j
5

j
6

1 n 2n 3n 4n 5n 6n
2 n 3)9266023 2n 7)0685827 3n 10)2101761
3 n 3)5564085 4)2975297 2n 6)7075956 7)4295413
4 n 3)3932313 3)9266023 4)4633244 2n 6)5454138
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Thus, equation (20) yields the set of coupled ordinary di!erential equations of
second order for the unknown time-dependent functions qL

n
. They can be obtained

by using the direct integration method [15] because closed solutions for them are
unavailable except in the case of e"0 where the inertia of the moving mass is
ignored. The central di!erence method [15] is used here since it has the simple
procedure for computer implementation. The discrete time interval for integration,
therefore, must be su$ciently small to ensure the stability and convergence of the
solutions.

3. NUMERICAL EXAMPLES

The continuous beams having uniform span length of from 2 through 4 spans are
considered in the numerical examples as shown in Figure 2, and it is also assumed
that a moving mass starts to move at the left-hand end of the "rst span at t"0 with
the constant velocity, v. Hence, the dimensionless distance of the moving mass to
the left-hand end of the continuous beam is given in a form of sN (¹ )"b¹ in which
b denotes the non-dimensional velocity parameter de"ned by v/al.



Figure 3. Normalized de#ections at the midpoint of the "rst span for two di!erent values of the
mass ratio e when (a) b"0)5 and (b) b"1)2; **, e"0; } } }, e"0)4.
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The calculated eigenvalues j
k

corresponding to the "rst six natural modes are
listed in Table 1 including those for a single-span beam. The present results are in
perfect agreement with those in reference [16]. The series solution of equation (15)
converges rapidly, and it is con"rmed that the lowest 12 terms give su$cient results
for all the calculated cases in the present paper.

The history curves of the midpoint de#ection, which is normalized by the scaling
factor of mgl3/EI, on each span of the continuous beams are shown in Figures 3}6
for four combinations of the mass ratio and the velocity parameter. The equivalent
velocities corresponding to b"0)5 and 1)2 are, respectively, v"35 and 85 m/s
when the #exural rigidity EI"1)96]109 N m2, mass per unit length
oA"1)0]103 kg/m and l"20 m in Figure 2. The abscissa of these plots can be
considered the instantaneous position of the moving mass on the continuous
beams. The in#uence of the inertia of the moving mass on the dynamic response of
the continuous beam is small in the case of b"0)5, whereas it is large for b"1)2
and the inertia of the moving mass seems to have greater e!ects upon the latter
spans of the continuous beam than the "rst span.



Figure 4. Normalized de#ections at the midpoint of the second span for two di!erent values of the
mass ratio e when (a) b"0)5 and (b) b"1)2; **, e"0; } } }, e"0)4.
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As pointed out by Lee [6, 7, 9], there is a possibility that the moving mass may
separate from the beam during motion. Then, the second assumption in the present
paper will not be valid for the succeeding motion after the separation. The mass
separation can be determined by observing the sign of the contact force; the mass
becomes free from the beam when the sign of the contact force changes the positive
to the negative. From equations (19), the contact force F

c
in the course of motion

has an expression as follows:

F
c

mg/l
"1!e

d2yL
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, (23)

where mg/l is the scaling factor for the contact force and the right-hand side is to be
evaluated using equation (22). The calculated minimum values of F

c
during motion

are shown in Figure 7 for both the values of b ranging from 0 to 1)5 and four
di!erent values of the mass ratio. Consequently, it is veri"ed that the mass
separation does not occur in Figures 3}6. As seen from Figure 7, the minimum



Figure 5. Normalized de#ections at the midpoint of the third span for two di!erent values of the
mass ratio e when (a) b"0)5 and (b) b"1)2; **, e"0; } } }, e"0)4.
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contact force does not decrease monotonously with b, so that it is necessary to
evaluate the contact force in each case for determination of the possible separation.

The in#uence of the velocity of the moving mass on the ampli"cation of
displacement at the middle point of each span is evaluated under the same
conditions as Figure 7. Since the purpose of the present study is to clarify the e!ect
of the inertia of the moving mass, the ampli"cation factor is de"ned as the ratio
between the maximum dynamic de#ection in the moving mass problem and that in
the corresponding moving force problem, namely, e"0. The computed results are
shown in Figures 8}11*the mass separation during motion is excluded here
because of a great di$culty in fully considering the possible separation shown in
Figure 7. From these results, the following points can be made:

(1) When the value of b exceeds by about 0)5 the ampli"cation factors for almost
all the spans of the continuous beams seem to change its behavior and their
local peaks show an increasing tendency with the velocity. The former
property appears clearly for the "rst span particularly.



Figure 6. Normalized de#ections at the midpoint of the fourth span for two di!erent values of the
mass ratio e when (a) b"0)5 and (b) b"1)2; **, e"0; } } }, e"0)4.
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(2) Without reference to both the mass ratio and the total number of spans, the
ampli"cation factor of the "rst span quite di!ers from those of the second and
the successive spans in that the "rst span reaches a certain value strongly
dependent on the mass ratio and changes gradually in the range of b larger
than 0)6; the other spans show considerable variations in the same range.

(3) The ampli"cation factor is more than unity generally and will become very
large in its magnitude for the multi-span continuous beam. However, it does
not necessarily increase with the mass ratio.

(4) In the calculated range of b, the inertia of the moving mass does not
signi"cantly a!ect the ampli"cation factor when the value of the mass ratio is
less than 0)1.

4. CONCLUSION

The dynamic behavior of a multi-span continuous beam subjected to a moving
mass with a constant velocity has been investigated. The method for analyzing the



Figure 7. Variation of minimum values of the normalized contact force during motion with the
velocity parameter b for four di!erent values of the mass ratio e where (a) two-span beam, (b)
three-span beam, and (c) four-span beam: **, e"0)1; } } }, e"0)2; -----, e"0)4; } - } -, e"0)6.

Figure 8. Variation of ampli"cation factor at the middle point of the "rst span with the velocity
parameter b for four di!erent values of the mass ratio e where (a) two-span beam, (b) three-span beam,
and (c) four-span beam: **, e"0)1; } } }, e"0)2; -----, e"0)4; } - } -, e"0)6.

Figure 9. Variation of ampli"cation factor at the middle point of the second span with the velocity
parameter b for four di!erent values of the mass ratio e where (a) two-span beam, (b) three-span beam,
and (c) four-span beam: **, e"0)1; } } }, e"0)2; -----, e"0)4; } - } -, e"0)6.
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Figure 10. Variation of ampli"cation factor at the middle point of the third span with the velocity
parameter b for four di!erent values of the mass ratio e where (a) three-span beam, and (b) four-span
beam: **, e"0)1; } } }, e"0)2; -----, e"0)4; } - } -, e"0)6.

Figure 11. Variation of ampli"cation factor at the middle point of the fourth span with the velocity
parameter b for four di!erent values of the mass ratio e:**, e"0)1; } } }, e"0)2; -----, e"0)4; } - } -,
e"0)6.
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present problem is the eigenfunction expansion or modal analysis accompanied by
the direct integration method, and it can also easily include other e!ects such as
non-uniformity of the continuous beam, various combinations of boundary
conditions and the speed variation of the moving mass. Numerical calculations
have been conducted to clarify the e!ects of two important parameters, the mass
ratio of the moving mass to the "rst span and the velocity of the moving mass, on
the dynamic response and the ampli"cation factor of the continuous beams having
uniform span length.
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Conclusions drawn from present analysis are as follows: (1) with the multi-span
continuous beam, the inertia of the moving mass has greater in#uences on the
second and the successive spans than the "rst span; (2) the ampli"cation factor for
almost all the spans of the multi-span continuous beam appears to change its
characteristics when the dimensionless velocity parameter b is larger than about
0)5, which is markedly recognized for the "rst span; and (3) the ampli"cation factor
will become very large in its magnitude for the multi-span continuous beam, but it
does not necessarily increase with the value of the mass ratio.
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